The following section describes the characteristic features of the exposed rocks in the study area. The rocks are primarily sedimentary, forming a series of layers that vary in thickness and composition. The columnar section shows the distribution of rock types, with each layer having distinct characteristics.

Columnar Section of Exposed Rocks

Cladoceran
- Sand
- Shale
- Slate

Carbonate
- Dolomite
- Limestone

Metamorphic
- Schist

Lithology
- Volcanic ash
- Conglomerate

Key to Columnar Section

- Cretaceous Sandstone
- Sandstone
- Shale
- Slate
- Dolomite
- Limestone
- Schist
- Volcanic ash
- Conglomerate

Columnar Section

The columnar section illustrates the stratigraphic sequence of the rocks, with each layer representing a different geological period. The layers vary in color, texture, and composition, providing insights into the geological history of the area.

Cladoceran Sandstone

- The sandstone is composed of well-rounded grains, primarily quartz, with minor amounts of feldspar and mica. The grains are well sorted, indicating deposition in a quiet water environment.
- The color is typically light gray or beige, characteristic of sandstones formed in low-energy settings.

Carbonate

- The carbonate layers are primarily composed of calcium carbonate, forming limestone and dolomite. These rocks are typically medium to dark gray in color.
- The limestone layers are often fossiliferous, containing remnants of marine life from past geological periods.

Metamorphic

- The schist layers are formed from the metamorphosis of sedimentary or igneous rocks. They are characterized by a foliated or banded appearance, indicating the action of heat and pressure during their formation.

Lithology

- Volcanic ash layers are typically fine-grained, dark gray or black, and are deposited during volcanic eruptions.
- Conglomerate layers are composed of rounded to sub-rounded pebbles, cobbles, and boulders cemented together.

Geologic Framework

The geologic framework provides a context for the study area, showing the relationship between the rocks and their geological history. The area is characterized by a sequence of sedimentary and metamorphic rocks, reflecting a long history of deposition and tectonic activity.

Conclusion

The study of the exposed rocks provides valuable insights into the geological history of the area. Understanding the composition and distribution of these rocks is crucial for interpreting the tectonic and depositional processes that have shaped the landscape. Further research could delve into the specific characteristics of each layer, potentially revealing more about the environmental conditions during their formation.