Optimizing Bison Health and Well-Being
Support:

Five-State Ruminant Consortium
South Dakota State University USDA/NIFA

USDA Tribal College Research Grants
Oglala Lakota College
Sinte Gleska University
Sitting Bull College

Intertribal Buffalo Council

University of Nebraska Medical Center
Central States Center for Agricultural Safety and Health
Oglala Lakota College
Ale Higa
Sinte Gleska University
Lisa Colombe
Sitting Bull College
Mafany Mongoh
Limiting production parameter in certain regional bison herds is:

Low reproductive efficiency

Reflected by:
- low calving percentage
- prolonged calving intervals
Considerations

Vision/Notions vs Opportunities
Optimizing Health and Well-Being:

1. ID animals
2. Records
3. Cull non-productive animals
4. Nutrition
5. Salt and mineral supplementation
6. Control parasites
7. Facilities
1. Animal Identification
2. Maintain Production Records

- Animal identification
- Body weight
- Age distribution
- Fertility
- Pregnancy status
- Body condition
- Disease exposure status
- Parasite exposure
3. Cull non-productive animals

Cull Animals

- Infertile
 - Open
 - Low potential

- Nonproductive
4. Meet Nutritional Requirements

- **Energy** - Limiting nutrient related to reproduction in cattle

- **Determine Body Condition**
4. Meet Nutritional Requirements

Body condition: 1-5
Body condition impacted reproduction
4. Meet Nutritional Requirements

- Cows with low BCS (≤3) were 2.4 times more likely to be open than cows with higher BCS (>3)
5. Trace Minerals

Copper Balance in Bison:
Trace minerals:
- Variation is common between and within different areas

Copper (Cu) deficiency:
- Primary Cu def- dietary Cu levels inadequate
- Secondary Cu def – Cu absorption is inadequate (high levels of molybdenum)
Effect of Mineral Supplementation to Correct Mineral Imbalances

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSP 11-001</td>
<td>CSP 11-002</td>
<td>MB 11-001</td>
<td>MB 11-002</td>
<td>MB 11-003</td>
<td>MB 11-004</td>
<td>MB 11-005</td>
<td>MB 11-006</td>
<td>MB 11-007</td>
</tr>
<tr>
<td></td>
<td>9M 9M</td>
<td>2-2.5M 2-2.5M 2-2.5M 2-2.5M 5F 2-2.5M 2-3M M 20F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>< 1.0 ppm</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.5 ppm 0.6 ppm</td>
<td>0.6 ppm 0.6 ppm 0.6 ppm 0.6 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>< 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm < 0.5 ppm < 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>< 1.0 ppm < 1.0 ppm</td>
<td>< 1.0 ppm</td>
<td>< 1.0 ppm</td>
<td>< 1.0 ppm</td>
<td>< 1.0 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.7 ppm 0.9 ppm</td>
<td>< 0.5 ppm < 0.5 ppm < 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>113 ppm 108 ppm</td>
<td>86 ppm 94 ppm 117 ppm 122 ppm 75 ppm 41 ppm 41 ppm 44 ppm 35 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>80 ppm 125 ppm</td>
<td>17 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>80 ppm</td>
<td>150 ppm 171 ppm 175 ppm 69 ppm 85 ppm 86 ppm 61 ppm 48 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.5 ppm < 0.5 ppm</td>
<td>< 0.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>368 ppm 411 ppm</td>
<td>484 ppm 444 ppm 448 ppm 516 ppm 317 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>5.9 ppm 4.1 ppm</td>
<td>7.4 ppm 6.7 ppm 7.9 ppm 10.0 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>< 2.0 ppm < 2.0 ppm</td>
<td>< 2.0 ppm</td>
<td>< 2.0 ppm</td>
<td>< 2.0 ppm</td>
<td>< 2.0 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>3.3 ppm 4.4 ppm</td>
<td>4.5 ppm 4.2 ppm 4.4 ppm 4.1 ppm 3.2 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>7180 ppm 8381 ppm</td>
<td>9637 ppm 9298 ppm 9381 ppm 10223 ppm 6686 ppm 3755 ppm 3469 ppm 3899 ppm 3373 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>3092 ppm 3612 ppm</td>
<td>3824 ppm 3920 ppm 3868 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>1.92 ppm 2.19 ppm</td>
<td>3.02 ppm 2.43 ppm 2.81 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1863 ppm 1618 ppm</td>
<td>1072 ppm 1126 ppm 1086 ppm 1466 ppm 932 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>< 2.5 ppm < 2.5 ppm</td>
<td>< 2.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>102 ppm 105 ppm</td>
<td>103 ppm 142 ppm 111 ppm 127 ppm 81 ppm 49 ppm 39 ppm 45 ppm 40 ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIFICIENT/MARGIN/NORMAL/HIGH/TOXIC
Copper Balance in Bison:

Signs:
Vague and nonspecific

(chronic diarrhea, anemia, poor growth rates, poor body condition, failure to reproduce)
SGU Bison Herd
Mineral Supplementation

Before vs. After Copper ppm in South Pasture
6. Parasitism is Prevalent
Parasite burdens

Moderate to heavy levels of endoparasites

- Coccidia
- Monezia
- Strongyles
- Trichuris
- Nematodirus
- Strongyloides
OSPRA Bison Herd
Large Roundworms (Strongyle-type)

Ova/gram of feces

Date of Collection

0 2 4 6 8 10 12
SGU Bison Herd
Large Roundworms (Strongyle-type)

Date of Collection

June 2012
Nov 2012
Feb 2013

Ova/gram of feces
7. Provide Adequate Facilities
• **How to:**

 – **Construct appropriate facilities**
Gathering and Handling Bison

• Optimal for health management practices

• Close contact with the animals.
Roundup

• All animals
 – Identification
 – Body weight
 – Age
 – Body condition score

Females
 – Pregnancy status
 – Lactation status

Bulls
 – Scrotal circumference
 – Breeding soundness examination
Alternatives to Handling Bison to Conduct Practices:

• Without gathering the herd and handling bison individually

• Implement some of the practices

• Herd level
Alternatives to Handling Bison to Conduct Practices:

- Control parasites
- Maintain body condition
- Maintain mineral balance
- Not individual animal ID
Alternatives to Handling Bison to Conduct Practices:

• Assess herd health parameters:
 – Collect samples at harvest
 • Feces
 • Blood
 • Liver

 Submit samples to a diagnostic lab
Harvest Sample Collection

- **Nutritional analyses**
 - Liver - mineral status
 - Rumen fluids - VFA
 - Pasture clip – nutritional evaluation

- **Disease exposure status**
 - Blood

- **Parasite status**
 - Fecal specimen

- **Bull fertility**
 - Scrotal circumference
 - Testicular lesions
Many opportunities to positively-impact herd health and well-being
Summary

1. Identify individual animals
2. Maintain herd records
3. **Cull** non-productive animals
4. Manage herd **nutrition**
 - Forage supplements
 - Mineral supplements
 - Limit herd size
5. Implement **parasite control** program
6. Provide adequate facilities
7. Implement **best practices**
 - Low stress animal handling
 - Worker safety
Team

Oglala Sioux Tribe
 Trudy Ecoffey
 Michael Thompson
 Rob Goodman
 Al Fast Wolf
 Bergil Kills Straight
 Milt Around Him
 Harvey Tallman

Taos Pueblo Tribe
 Delbert Chisholm

Oglala Lakota College
 Ale Higa

Black Hills State University
 Shane Sarver

Sinte Gleska University
 Lisa Colombe
 Sherry Red Owl

• University of Nebraska-Lincoln
• Clayton Kelling
• Christina Topliff
• Roberto Cortinas
• David Smith
• Gary Rupp
• Richard Randle
• D. Scott McVey
• David Hardin

• University of Wyoming
• Steve Paisley

• Cornell University
• Donald Schlafer

• Texas A&M University
• James Derr
Team

Lower Brule Sioux Tribe
 Ben Janis
 Shaun Grassel

Fort Peck Tribes
 Robert Magnum

Northern Cheyenne Tribe
 Mark Roundstone

Crow Creek Sioux Tribe
 Wayne Big Eagle

Sisseton Wahpeton Oyate
 Alva Quinn

Rosebud Sioux Tribe
 Wayne Frederick

Standing Rock Sioux Tribe
 Mike Faith
 Jeff Kelly

Sitting Bull College
 Mafany Mongoh
 Jackie Bigger

Custer State Park
 Chad Kremer
 Gary Brundige

Badlands National Park
 Eddie Childers

Wild Idea Buffalo Co.
 Dan O’Brien

Pearson Livestock Equipment
 Jack Johnston
Support:

Five-State Ruminant Consortium
South Dakota State University USDA/NIFA

Intertribal Buffalo Council

USDA Tribal College Research Grants
Oglala Lakota College
Sinte Gleska University
Sitting Bull College

University of Nebraska Medical Center
Central States Center for Agricultural Safety and Health
Clayton L. Kelling
University of Nebraska – Lincoln
402-472-3040
ckelling@unl.edu